
Chapter 61

Linear Quadratic Regulator2

(LQR)3

Reading
1. http://underactuated.csail.mit.edu/lqr.html, Lecture 3-4 at

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-323-
principles-of-optimal-control-spring-2008/lecture-notes

2. Optional: Applied Optimal Control by Bryson & Ho, Chapter 4-5

This chapter is the analogue of Chapter 3 on Kalman filtering. Just like4

Chapter 2, the previous chapter gave us two algorithms, namely value iteration5

and policy iteration, to solve dynamic programming problems for a finite num-6

ber of states and a finite number of controls. Solving dynamic programming7

problems is difficult if the state/control space are infinite. In this chapter, we8

will look at an important and powerful special case, called the Linear Quadratic9

Regulator (LQR), when we can solve dynamic programming problems easily.10

Just like a lot of real-world state-estimation problems can be solved using11

the Kalman filter and its variants, a lot of real-world control problems can be12

solved using LQR and its variants.13

6.1 Discrete-time LQR14

Consider a deterministic, linear dynamical system given by15

xk+1 = Axk +Buk; x0 is given.

where xk ∈ Rd and uk ∈ Rm which implies that A ∈ Rd×d and B ∈ Rd×m.16

In this chapter, we are interested in calculating a feedback control uk =17

u(xk) for such a system. Just like we formulated the problem in dynamic18

programming, we want to pick a feedback control which leads to a trajectory19

1

http://underactuated.csail.mit.edu/lqr.html
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-323-principles-of-optimal-control-spring-2008/lecture-notes/
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-323-principles-of-optimal-control-spring-2008/lecture-notes/

2

that achieves a minimum of some run-time cost and a terminal cost. We will20

assume that both the run-time and terminal costs are quadratic in the state and21

control input, i.e.,22

q(x, u) =
1

2
x⊤Qx+

1

2
u⊤Ru (6.1)

where Q ∈ Rd×d and R ∈ Rm×m are symmetric, positive semi-definite23

matrices24

Q = Q⊤ ⪰ 0, R = R⊤ ⪰ 0.

Effectively, if Q were a diagonal matrix, a large diagonal entry would Qii25

models our desire that the trajectory of the system should not have a large value26

of the state xi along its trajectories. We want these matrices to be positive27

semi-definitive to prevent dynamic programming from picking a trajectory28

which drives down the run-time cost to negative infinity by picking.29

Example Consider the discrete-time equivalent of the so-called double inte-30

grator z̈(t) = u(t). The linear system in this case (obtained by creating two31

states x := [z(t), ż(t)] is32

xk+1 =

[
1 ∆t

0 1

]
xk +

[
0

∆t

]
uk.

� This system is called the double
integrator because of the structure
z̈ = u; if z denotes the position of
an object the equation is simply
Newton’s law which connects the
force applied u to the acceleration.

33

First, note that a continuous-time linear dynamical system ẋ = Ax is34

asymptotically stable, i.e., from any initial condition x(0) its trajectories go35

to the equilibrium point x = 0 (x(t) → 0 as t → ∞). Asymptotic stability36

occurs if all eigenvalues of A are strictly negative. A discrete-time linear37

dynamical system xk+1 = Axk is asymptotically stable if all eigenvalues of38

A have magnitude strictly smaller than 1, |λ(A)| < 1.39

A typical trajectory of the double integrator will look as follows. Suppose

0 2 4 6 8 10
t [s]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

z,
 d

ot
 z

, u

Double integrator

z
dot z
u

Figure 6.1: The trajectory of z(t) as a function of time t for a double integrator z̈(t) = u
where we have chosen a stabilizing (i.e., one that makes the system asymptotically
stable) controller u = −z(t)− ż(t). Notice how the trajectory starts from some initial
condition (in this case z(0) = 1 and ż(0) = 0) and moves towards its equilibrium
point z = ż = 0.

3

40

we would like to pick a different controller that more quickly brings the system41

to its equilibrium. One way of doing so is to minimize42

J =

T∑
k=0

∥xk∥2

which represents how far away both the position and velocity are from zero43

over all times k. The following figure shows the trajectory that achieves a44

small value of J .45

0 2 4 6 8 10
t [s]

4

3

2

1

0

1

z,
 d

ot
 z

, u

Double integrator (large control)

z
dot z
u

Figure 6.2: The trajectory of z(t) as a function of time t for a double integrator z̈(t) = u
where we have chosen a large stabilizing control at each time u = −5z(t) − 5ż(t).
Notice how quickly the state trajectory converges to the equilibrium without much
oscillation as compared to Figure 6.1 but how large the control input is at certain times.

This is obviously undesirable for real systems where we may want the46

control input to be bounded between some reasonable values (a car cannot47

accelerate by more than a certain threshold). A natural way of enforcing this48

is to modify our our desired cost of the trajectory to be49

J =

T∑
k=0

(
∥xk∥2 + ρ∥uk∥2

)
where the value of the parameter ρ is something chosen by the user to give50

a good balance of how quickly the trajectory reaches the equilibrium point51

and how much control is exerted while doing so. Linear-Quadratic-Regulator52

(LQR) is a generalization of this idea, notice that the above example is equiva-53

lent to setting Q = Id×d and R = ρIm×m for the run-time cost in (6.1).54

Back to LQR With this background, we are now ready to formulate the55

Linear-Quadratic-Regulator (LQR) problem which is simply dynamic pro-56

gramming for a linear dynamical system with quadratic run-time cost. In order57

to enable the system to reach the equilibrium state even if we have only a finite58

time-horizon, we also include a quadratic cost59

qf (x) =
1

2
x⊤Qfx. (6.2)

4

The dynamic programming problem is now formulated as follows.60

Finite time-horizon LQR problem Find a sequence of control inputs
(u0, u1, . . . , uT−1) such that the function

J(x0;u0, u1, . . . , uT−1) =
1

2
x⊤
TQfxT +

1

2

T−1∑
k=0

(
x⊤
k Qxk + u⊤

k Ruk

)
(6.3)

is minimized under the constraint that xk+1 = Axk +Buk for all times
k = 0, . . . , T − 1 and x0 is given.

6.1.1 Solution of the discrete-time LQR problem61

We know the principle of dynamic programming and can apply it to solve the62

LQR problem. As usual, we will compute the cost-to-go of a trajectory that63

starts at some state x and goes further by T − k time-steps, Jk(x) backwards.64

Set65

J∗
T (x) =

1

2
x⊤Qfx for all x.

Using the principle of dynamic programming, the cost-to-go JT−1 is given by66

J∗
T−1(xT−1) = min

u

{
1

2

(
x⊤
T−1QxT−1 + u⊤Ru

)
+ J∗

T (AxT−1 +Bu)

}
= min

u

{
1

2

(
x⊤
T−1QxT−1 + u⊤Ru+ (AxT−1 +Bu)⊤Qf (AxT−1 +Bu)

)}
.

We can now take the derivative of the right-hand side with respect to u to get67

0 =
dRHS

du
=

{
Ru+B⊤Qf (AxT−1 +Bu)

}
⇒ u∗

T−1 = −(R+B⊤QfB)−1B⊤QfA xT−1

≡ −KT−1 xT−1.

(6.4)

where68

KT−1 = (R+B⊤QfB)−1B⊤QfA

is (surprisingly) also called the Kalman gain. The second derivative is positive69

semi-definite70

d2RHS
du2

= R+B⊤QfB ⪰ 0

so we know that u∗
T−1 is a minimum of the convex quantity on the right-hand71

side. Notice that the optimal control u∗
T−1 is a linear function of the state72

xT−1. Let us now expand the cost-to-go JT−1 using this optimal value (the73

subscript T − 1 on the curly bracket simply means that all quantities are at74

5

time T − 1)75

J∗
T−1(xT−1) =

1

2

{
x⊤Qx+ u∗⊤Ru∗ + (Ax+Bu∗)⊤Qf (Ax+Bu∗)

}
T−1

=
1

2
x⊤
T−1

{
Q+K⊤RK + (A−BK)⊤Qf (A−BK)

}
T−1

xT−1

≡ 1

2
x⊤
T−1PT−1xT−1

where we set the stuff inside the curly brackets to the matrix P which is also76

positive semi-definite. This is great, the cost-to-go is also a quadratic function77

of the state xT−1. Let us assume that this pattern holds for all time steps78

and the cost-to-go of the optimal LQR trajectory starting from a state x and79

proceeding forwards for T − k time-steps is80

J∗
k (x) =

1

2
x⊤Pkx.

We can now repeat the same exercise to get a recursive formula for Pk in terms81

of Pk+1. This is the solution of dynamic programming for the LQR problem82

as looks as follows.83

PT = Qf

Kk =
(
R+B⊤Pk+1 B

)−1
B⊤Pk+1 A

Pk = Q+K⊤
k R Kk + (A−BKk)

⊤
Pk+1 (A−BKk) ,

(6.5)

for k = T − 1, T − 2, . . . , 0. There are a number of important observations to84

be made from this calculation:85

1. The optimal controller u∗
k = −Kkxk is a linear function of the state86

xk. This is only true for linear dynamical systems with quadratic costs.87

Notice that both the state and control space are infinite sets but we have88

managed to solve the dynamic programming problem to get the optimal89

controller. We could not have done it if the run-time/terminal costs were90

not quadratic or if the dynamical system were not linear. Can you say91

why?92

2. The cost-to-go matrix Pk and the Kalman gain Kk do not depend upon93

the state and can be computed ahead of time if we know what the time94

horizon T is going to be.95

3. The Kalman gain changes with time k. Effectively, the LQR controller96

picks a large control input to quickly reduce the run-time cost at the97

beginning (if the initial condition were such that the run-time cost of98

the trajectory would be very large) and then gets into a balancing act99

where it balances the control effort and the state-dependent part of the100

run-time cost. LQR is an optimal way to strike a balance between the101

two examples in Figure 6.1 and Figure 6.2.102

The careful reader will notice how the equations in (6.5) and our remarks103

about them are similar to the update equations of the Kalman filter and our104

remarks there. In fact we will see shortly how spookily similar the two are.105

The key difference is that Kalman filter updates run forwards in time and106

6

update the covariance while LQR updates run backwards in time and update107

the cost-to-go matrix P . This is not surprising because LQR is an optimal108

control problem, its update equations run backward in time. � If you are trying this example
yourself, I used the formula for
continuous-time LQR and then
discretized the controller while
implementing it. We will see this
in Section 6.2

0 2 4 6 8 10
t [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
z,

 d
ot

 z
, u

Double integrator (LQR control)

z
dot z
u

Figure 6.3: The trajectory of z(t) as a function of time t for a double integrator
z̈(t) = u where we have chosen a controller obtained from LQR with Q = I and
R = 5. This gives the controller to be about u = −0.45z(t)− 1.05ż(t). Notice how
we still get stabilization but the control acts more gradually. Using different values
of R, we can get many different behaviors. Another key aspect of LQR as compared
to Figure 6.1 where the control was chosen in an ad hoc fashion is to let us prescribe
the quality of state trajectories using high-level quantities like Q,R.

109

6.2 Hamilton-Jacobi-Bellman equation110

This section will show how the principle of dynamic programming looks for111

continuous-time deterministic dynamical systems112

ẋ = f(x, u), with x(0) = x0.

As we discussed in Chapter 3, we can think of this as the limit of discrete-time113

dynamical system xk+1 = f discrete(xk, uk) as the time discretization goes to114

zero. Just like we have a sequence of controls in the discrete-time case, we115

have a continuous curve that determines the control (let us also call it the116

control sequence)117

{u(t) : t ∈ R+}

which gives rise to a trajectory of the states118

{x(t) : t ∈ R+}

for the dynamical system. Let us consider the case when we want to find119

control sequences that minimize the integral of the cost along the trajectory120

that stops at some fixed, finite time-horizon T :121

qf (x(T)) +

∫ T

0

q(x(t), u(t)) dt.

This cost is again a function of the run-time cost and a terminal cost.

� Since {x(t)}t≥0 and {u(t)}t≥0

are continuous curves and the cost is
now a function of a
continuous-curve, mathematicians
say that the cost is a “functional” of
the state and control trajectory.

122

7

Continuous-time optimal control problem We again want to solve for

J∗(x0) = min
u(t), t∈[0,T]

{
qf (x(T)) +

∫ T

0

q(x(t), u(t)) dt

}
(6.6)

with the system satisfying ẋ = f(x, u) at each time instant. Notice that
the minimization is over a function of time {u(t) : t ∈ [0, T]} as opposed
to a discrete-time sequence of controls that we had in the discrete-time
case. We will next look at the Hamilton-Jacobi-Bellman equation which
is a method to solve optimal-control problems of this kind.

The principle of dynamic programming principle is still valid: if we have123

an optimal control trajectory {u∗(t) : t ∈ [0, T]} we can chop it up into two124

parts at some intermediate time t ∈ [0, T] and claim that the tail is optimal.125

In preparation for this, let us define the cost-to-go of going forward by T − t126

time as127

J∗(x, t) = min
u(s), s∈[t,T]

{
qf (x(T)) +

∫ T

t

q(x(s), u(s)) ds

}
,

the cost incurred if the trajectory starts at state x and goes forward by T − t

time. This is very similar to the cost-to-go J∗
k (x) we had in discrete-time

dynamic programming. Dynamic programming now gives

J∗(x(t), t) = min
u(s), t≤s≤T

{
qf (x(T)) +

∫ T

t

q(x(s), u(s)) ds
}

= min
u(s), t≤s≤T

{
qf (x(T)) +

∫ t+∆t

t

q(x(s), u(s)) ds+
∫ T

t+∆t

q(x(s), u(s)) ds
}

= min
u(s), t≤s≤t+∆t

{
J∗(x(t+∆t), t+∆t) +

∫ t+∆t

t

q(x(s), u(s)) ds
}
.

We now take the Taylor approximation of the term J∗(x(t+∆t), t+∆t) as128

follows129

J∗(x(t+∆t), t+∆t)− J∗(x(t), t)

≈ ∂xJ
∗(x(t), t) (x(t+∆t)− x(t)) + ∂tJ

∗(x(t), t)∆t

≈ ∂xJ
∗(x(t), t) f(x(t), u(t)) ∆t+ ∂tJ

∗(x(t), t)∆t

where ∂xJ
∗ and ∂tJ

∗ denote the derivative of J∗ with respect to its first and130

second argument respectively. We substitute this into the minimization and131

collect terms of ∆t to get132

0 = ∂t J
∗(x(t), t) + min

u(t)∈U

{
q(x(t), u(t)) + f(x(t), u(t)) ∂xJ

∗(x(t), t)
}
.

(6.7)
Notice that the minimization in (6.7) is only over one control input u(t) ∈ U ,133

this is the control that we should take at time t. (6.7) is called the Hamilton-134

8

Jacobi-Bellman (HJB) equation. Just like the Bellman equation135

J∗
k (x) = min

u∈U

{
qk(x, u) + J∗

k+1(f(x, u))
}
.

has two quantities x and the time k, the Hamilton-Jacobi-Bellman equation136

also has two quantities x and continuous time t. Just like the Bellman equation137

is solved backwards in time starting from T with J∗
k (x) = qf (x), the HJB138

equation is solved backwards in time by setting139

J∗(x, T) = qf (x).

You should think of the HJB equation as the continuous-time,
continuous-space analogue of Dijkstra’s algorithm when the number
of nodes in the graph goes to infinity and the length of each edge is also
infinitesimally small.

6.2.1 Infinite-horizon HJB140

The infinite-horizon problem with the HJB equation is easy: since we know141

that the optimal cost-to-go is not a function of time, we have142

∂tJ
∗(x, t) = 0

and therefore J∗(x) satisfies143

0 = min
u∈U

{q(x, u) + f(x, u) ∂xJ
∗(x)} . (6.8)

In this case, the above equation makes sense only if the integral of the run-time144

cost with the optimal controller
∫∞
0

q(x(t), u∗(x(t))) dt remains bounded and145

does not diverge to infinity. Therefore typically in this problem we will set146

q(0, 0) = 0, i.e., there is no cost for the system being at the origin with zero147

control, otherwise the integral of the run-time cost will never be finite. This148

also gives the boundary condition J∗(0) = 0 for the HJB equation.149

6.2.2 Solving the HJB equation150

The HJB equation is a partial differential equation (PDE) because there is one151

cost-to-go from every state x ∈ X and for every time t ∈ [0, T]. It belongs152

to a large and important class of PDEs, collectively known as Hamilton-153

Jacobi-type equations. As you can imagine, since dynamic programming is154

so pervasive and solutions of DP are very useful in practice for a number of155

problems, there have been many tools invented to solve the HJB equation.156

These tools have applications to a wide variety of problems, from under-157

standing how sound travels in crowded rooms to how light diffuses in an158

animated movie scene, to even obtaining better algorithms to train deep net-159

works (https://arxiv.org/abs/1704.04932). HJB equations are usually never160

exactly solvable and a number of approximations need to be made in order to161

solve it.162

https://arxiv.org/abs/1704.04932

9

In this course, we will not solve the HJB equation. Rather, we are
interested in seeing how the HJB equation looks for continuous-time
linear dynamical systems (both deterministic and stochastic ones) and
LQR problems for such systems, as done in the following section.

An example We will look at a classical example of the so-called car-on-163

the-hill problem given below. The state of the problem is the position and

Figure 6.4: A car whose position is given by z(t) would like to climb the hill to its
right and reach the top with minimal velocity. The car rolls on the hill without friction.
The run-time reward is zero everywhere inside the state-space. Terminal reward is -1
for hitting the left boundary (z = −1) and 1 − ż/2 for reaching the right boundary
(z = 1). The car is a single integrator, i.e., ż = u with only two controls (u = 4 and
u = −4) and cannot exceed a given velocity (in this case |ż| ≤ 4. This looks like a
simple dynamic programming problem but it is quite hard due to the constraint on the
velocity. The car may need to make multiple swing ups before it gains enough velocity
(but not too much) to climb up the hill.

164

velocity (z, ż) and we can solve a two-dimensional HJB equation to obtain the165

optimal cost-to-go from any state, as done by the authors Yuval Tassa and Tom166

Erez in “Least Squares Solutions of the HJB Equation With Neural Network167

Value-Function Approximators”168

(https://homes.cs.washington.edu/t̃odorov/courses/amath579/reading/NeuralNet.pdf).169

In practice, while solving the HJB PDE, one discretizes the state-space at given170

set of states and solves the HJB equation (6.7) on this grid using numerical171

methods (these authors used neural networks to solve it). The end result looks172

as follows.173

6.2.3 Continuous-time LQR174

Consider a linear continuous-time dynamical system given by175

ẋ = A x+B u; x(0) = x0.

In the LQR problem, we are interested in finding a control trajectory that176

minimizes, as usual, a cost function that is quadratic in states and controls,177

except that we have an integral of the run-time cost because our system is a178

https://homes.cs.washington.edu/~todorov/courses/amath579/reading/NeuralNet.pdf

10

Figure 6.5: The left-hand side picture shows the infinite-horizon cost-to-go J∗(z, ż)
for the car-on-the-hill problem. Notice how the value function is non-smooth at various
places. This is quite typical of difficult dynamic programming problems. The right-
hand side picture shows the optimal trajectories of the car (z(t), ż(t)); gray areas
indicate maximum control and white areas indicate minimum control. The black lines
show a few optimal control sequences taken the car starting from various states in the
state-space. Notice how the optimal control trajectory can be quite different even if
the car starts from nearby states (-0.5,1) and (-0.4,1.2)). This is also quite typical of
difficult dynamic programming problems.

continuous-time system179

1

2
x(T)

⊤
Qf x(T) +

1

2

∫ T

0

x(t)
⊤
Q x(t) + u(t)

⊤
R u(t) dt.

This is a very nice setup for using the HJB equation from the previous section.180

Let us use our intuition from the discrete-time LQR problem and say that181

the optimal cost is quadratic in the states, namely,182

J∗(x, t) =
1

2
x(t)

⊤
P (t) x(t);

notice that as usual the optimal cost-to-go is a function of the states x and the183

time t because is the optimal cost of the continuous-time LQR problem if the184

system starts at a state x at time t and goes on until time T ≥ t. We will now185

check if this J∗ satisfies the HJB equation (we don’t write the arguments x(t),186

u(t) etc. to keep the notation clear)187

−∂tJ
∗(x, t) = min

u∈U

{
1

2

(
x⊤Qx+ u⊤R u

)
+ (A x+B u)⊤ ∂xJ

∗(x, t)

}
(6.9)

from (6.7). The minimization is over the control input that we take at time t.188

11

Also notice the partial derivatives189

∂xJ
∗(x, t) = P (t) x.

∂tJ
∗(x, t) =

1

2
x⊤Ṗ (t) x.

It is convenient in this case to see that the minimization can be performed190

using basic calculus (just like the discrete-time LQR problem), we differentiate191

with respect to u and set it to zero.192

0 =
d RHS of HJB

du
⇒ u∗(t) = −R−1 B⊤P (t) x(t)

≡ −K(t) x(t).

(6.10)

where K(t) = R−1 B⊤P (t) is the Kalman gain. The controller is again linear193

in the states x(t) and the expression for the gain is very simple in this case,194

much simpler than discrete-time LQR. Since R ≻ 0, we also know that u∗(t)195

computed here is the global minimum. If we substitute this value of u∗(t)196

back into the HJB equation we have197

{}
∣∣∣
u∗(t)

=
1

2
x⊤ {

PA+A⊤P +Q− PBR−1B⊤P
}

x.

If order to satisfy the HJB equation, we must have that the expression above is198

equal to −∂tJ
∗(x, t). We therefore have, what is called the Continuous-time199

Algebraic Riccati Equation (CARE), for the matrix P (t) ∈ Rd×d
200

−Ṗ = PA+A⊤P +Q− PBR−1B⊤P. (6.11)

This is an ordinary differential equation for the matrix P . The derivative201

Ṗ = dP
dt stands for differentiating every entry of P individually with time t.202

The terminal cost is 1
2x(T)

⊤
Qf x(T) which gives the boundary condition for203

the ODE as204

P (T) = Qf .

Notice that the ODE for the P (t) travels backwards in time.205

Continuous-time LQR has particularly easy equations, as you can see206

in (6.10) and (6.11) compared to those for discrete-time ((6.4) and (6.5)).207

Special techniques have been invented for solving the Riccati equation. I208

used the function scipy.linalg.solve_continuous_are to obtain Figure 6.3 us-209

ing the continuous-time equations; the corresponding function for solving210

Discrete-time Algebraic Riccati Equation (DARE) which is given in (6.5)211

is scipy.linalg.solve_discrete_are. The continuous-time point-of-view also212

gives powerful connections to the Kalman filter, where you can show that the213

Kalman filter and LQR are duals of each other: in fact the equations for the214

Kalman filter (in continuous-time) and continuous-time LQR turn out to be215

exactly the same after you interchange appropriate quantities (!).216

12

Infinite-horizon LQR Just like the infinite-horizon HJB equation has ∂tJ∗(x, t) =217

0, if we have an infinite-horizon LQR problem, the cost matrix P should not218

be a function of time219

Ṗ = 0.

The continuous-time algebraic Riccati equation in (6.11) now becomes220

0 = PA+A⊤P +Q− PBR−1B⊤P.

with the cost-to-go being given by J∗(x) = 1
2x

⊤Px.221

6.3 Stochastic LQR222

We will next look at a very powerful result. Say we have a stochastic linear223

dynamical system224

ẋ(t) = Ax(t) +Bu(t) +Bϵϵ(t); x(0) is given

where ϵ(t) is standard Gaussian noise ϵ(t) ∼ N(0, I) that is uncorrelated225

in time and would like to find a control sequence {u(t) : t ∈ [0, T]} that226

minimizes a quadratic run-time and terminal cost227

E
ϵ(t):t∈[0,T]

[
1

2
x(T)

⊤
Qfx(T) +

1

2

∫ T

0

x(t)
⊤
Qx(t) + u(t)

⊤
Ru(t) dt

]
.

over a finite-horizon T . Notice that since the system is stochastic now, we228

should minimize the expected value of the cost over all possible realizations of229

the noise {ϵ(t) : t ∈ [0, T]}. This is a very challenging problem, conceptually230

it is the equivalent of dynamic programming for an MDP with an infinite231

number of states x(t) ∈ Rd and an infinite number of controls u(t) ∈ Rm.232

However, it turns out that the optimal controller that we should pick in this233

case is also given by the standard LQR problem234

u∗(t) = −R−1B⊤P (t) x(t)

with − Ṗ = PA+A⊤P +Q− PBR−1B⊤P ; P (T) = Qf .

We will not do the proof (it is easy but tedious, you can try to show it by235

writing the HJB equation for the stochastic LQR problem). This is a very236

surprising result because it says that even if the dynamical system had noise,237

the optimal control we should pick is exactly the same as the control we would238

have picked had the system been deterministic. It is a special property of the239

LQR problem and not true for other dynamical systems (nonlinear ones, or240

ones with non-Gaussian noise) or other costs.241

We know that the control u∗(t) is the same as the deterministic case. Is242

the cost-to-go J∗(x, t) also the same? If you think about this, the cost-to-go243

in the stochastic case has to be a bit larger than the deterministic case because244

the noise ϵ(t) is always going to non-zero when we run the system, the LQR245

cost J∗(x0, 0) =
1
2x

⊤
0 P (0)x0 is, after all, only the cost of the deterministic246

problem. It turns out that the cost for the stochastic LQR case for an initial247

13

0 2 4 6 8 10
t [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

z,
 d

ot
 z

, u
Double integrator (LQR control)

z
dot z
u

0 2 4 6 8 10
t [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

z_
s,

 d
ot

 z
_s

, u

Stochastic double integrator (LQR control)

z_s
dot z_s
u

Figure 6.6: Comparison of the state trajectories of deterministic LQR and stochastic
LQR problem with Bϵ = [0.1, 0.1]. The left panel is the same as that in Figure 6.3.
The control input is the same in both cases but notice that the states in the plot on the
right need not converge to the equilibrium due to noise. The cost of the trajectory will
also be higher for the stochastic LQR case due to this. The total cost is J∗(x0) = 32.5
for the deterministic case (32.24 for the quadratic state-cost and 0.26 for the control
cost). The total cost J∗(x0) is much higher for the stochastic case, it is 81.62 (81.36
for the quadratic state cost and 0.26 for the control cost).

state x0 is248

J∗(x0, 0) = E
ϵ(t):t∈[0,T]

[
1

2
x(T)

⊤
Qfx(T) +

1

2

∫ T

0

. . . dt

]

=
1

2
x⊤
0 P (0)x0 +

1

2

∫ T

0

tr(P (t)BϵB
⊤
ϵ) dt.

The first term is the same as that of the deterministic LQR problem. The249

second term is the penalty we incur for having a stochastic dynamical system.250

This is the minimal cost achievable for stochastic LQR but it is not the same251

as that of the deterministic LQR.252

6.4 Linear Quadratic Gaussian (LQG)253

Our development in the previous sections and the previous chapter was based254

on a Markov Decision Process, i.e., we know the state x(t) at each instant in255

time t even if this state x(t) changes stochastically. We said that the optimal256

control for the linear dynamics is still u∗(t) = −K(t) x(t). What should one257

do if we cannot observe the state exactly?258

Imagine a “continuous-time” form the observation equation in the Kalman259

filter where we receive observations of the form260

y(t) = Cx(t) +Dν.

where ν ∼ N(0, I) is standard Gaussian noise that corrupts our observations261

y. If we extrapolate the definitions of the Kalman filter mean and covariance262

to this continuous-time setting, we can write the KF as follows. We know that263

the Kalman filter is the optimal estimate of the state given all past observations,264

14

so it computes265

µ(t) = E
ϵ(s),ν(s): s∈[0,t]

[x(t) | y(s) : s ∈ [0, t]] .
� As we discussed while
introducing stochastic dynamical
systems, there are various
mathematical technicalities
associated with conditioning on a
continuous-time signal
{y(s) : s ∈ [0, t]}. To be precise
mathematicians define what is called
a “filtration” Y(t) which is the
union of the Borel σ-fields
constructed using increasing subsets
of the set {y(s) : s ∈ [0, t]}. Let us
not worry about this here.

There exists a “continuous-time version” of the Kalman filter (which was266

actually invented first), called the Kalman-Bucy filter. If the covariance of the267

estimate is268

Σ(t) = E
ϵ(s),ν(s): s∈[0,t]

[
x(t) x(t)

⊤| y(s) : s ∈ [0, t]
]
,

the Kalman-Bucy filter updates µ(t),Σ(t) using the differential equation269

d
dt
µ(t) = Ax(t) +Bu(t) +K(t) (y(t)− Cµ(t))

d
dt
Σ(t) = AΣ(t) + Σ(t)A⊤ +BϵB

⊤
ϵ −K(t)DD⊤K(t)

⊤

where K(t) = Σ(t) C⊤(DD⊤)−1.

(6.12)

This equation is very close to the Kalman filter equations you saw in Chapter270

3. In particular, notice the close similarity of the expression for the Kalman271

gain K(t) with the Kalman gain of the LQR problem. You can read more at272

https://en.wikipedia.org/wiki/Kalman_filter.273

Linear Quadratic Gaussian (LQG) It turns out that we can plug in the
Kalman filter estimate µ(t) of the state x(t) in order to compute optimal
control for LQR if we know the state only through observations y(t)

u∗(t) = −K(t) µ(t). (6.13)

It is almost as if, we can blindly run a Kalman Filter in parallel with the
deterministic LQR controller and get the optimal control for the stochastic
LQR problem even if we did not observe the state of the system exactly.
This method is called Linear Quadratic Gaussian (LQG).

This is a very powerful and surprising result. It is only true for linear
dynamical systems with linear observations, Gaussian noise in both the
dynamics and the observations and quadratic run-time and terminal costs.
It is not true in other cases. However, it is so elegant and useful that it
inspires essentially all other methods that control a dynamical system
using observations from sensors.

Certainty equivalence For instance, even if we are using a particle filter to274

estimate the state of the system, we usually use the mean of the state estimate275

at time t given by µ(t) “as if” it were the true state of the system. Even if we276

were using some other feedback control u(x) different than the LQR control277

(say feedback linearization), we usually plug in this estimate µ(t) in place of278

x(t). Doing so is called “certainty equivalence” in control theory/robotics,279

which is a word borrowed from finance where one takes decisions (controls)280

directly using the estimate of the state (say stock price) while fully knowing281

https://en.wikipedia.org/wiki/Kalman_filter

15

the the stock price will change in the future stochastically.282

6.4.1 (Optional material) The duality between the Kalman283

Filter and LQR284

We can re-write the covariance in (6.12) using the identity285

d
dt

(
Σ(t)−1

)
= Σ(t)−1Σ̇(t)Σ(t)−1

to get286

Ṡ = C⊤ (
DD⊤)−1

C −A⊤S − SA− SBwB
⊤
wS (6.14)

where we have defined S := Σ−1.287

Notice that the two equations, updates to the LQR cost matrix in (6.11)288

−Ṗ = PA+A⊤P +Q− PBR−1B⊤P

look quite similar to this equation. In fact, they are identical and you can289

substitute the following.290

LQR Kalman-Bucy filter

P Σ−1

A −A

BR−1B BwB
⊤
w

Q C⊤ (
DD⊤)−1

C

t T − t

291

Let us analyze this equivalence. Notice that the inverse of the Kalman292

filter covariance is like the cost matrix of LQR. This is conceptually easy to293

understand, our figure of merit for filtering is the inverse covariance matrix294

(smaller the better) and our figure of merit for the LQR problem is the cost295

matrix P (smaller the better). Similarly, smaller the LQR cost, better the296

controller. The “dynamics” of the Kalman filter is the reverse of the dynamics297

of the LQR problem, this shows that the P matrix is updated backwards in298

time while the covariance Σ is updated forwards in time. The next identity299

BR−1B⊤ = BwB
⊤
w

is very interesting. Imagine a situation where we have a fully-actuated system300

with B = I and Bw being a diagonal matrix. This identity suggests that301

larger the control cost Rii of a particular actuator i, lower is the noise of using302

that actuator (Bw)ii, and vice-versa. This is how muscles in your body have303

evolved: muscles that are cheap to use (low R) are also very noisy in what they304

do whereas muscles that are expensive to use (large R) which are typically305

the biggest muscles in the body are also the least noisy and most precise. You306

can read more about this in the paper titled “General duality between optimal307

control and estimation” by Emanuel Todorov. The next identity308

Q = C⊤ (
DD⊤)−1

C

16

is related to the quadratic state-cost in LQR. Imagine the situation where both309

Q,D are diagonal matrices. If the noise in the measurements Dii is large, this310

is equivalent to the state-cost matrix Qii being small; roughly there is no way311

we can achieve a low state-cost x⊤Qx in our system that consists of LQR and312

a Kalman filter (this combination is known as Linear Quadratic Gaussian LQG313

as saw before) if there is lots of noise in the state measurements. The final314

identity315

t = T − t

is the observation that we have made many times before: dynamic program-316

ming travels backwards in time and the Kalman filter travels forwards in317

time.318

6.5 Iterative LQR (iLQR)319

This section is analogous to the section on the Extended Kalman Filter. We320

will study how to solve optimal control problems for a nonlinear dynamical321

system322

ẋ = f(x, u); x(0) = x0 is given.

We will consider a deterministic continuous-time dynamical system, the modifi-323

cations to following section that one would make if the system is discrete-time,324

or stochastic, are straightforward and follow the same strategy. First consider325

the problem where the run-time and terminal costs are quadratic326

1

2
x(T)

⊤
Qfx(T) +

1

2

∫ T

0

x(t)
⊤
Q x(t) + u(t)

⊤
Ru(t) dt.

Receding horizon control and Model Predictive Control (MPC) One easy327

way to solve the dynamic programming problem, i.e., find a control trajectory328

of the nonlinear system that minimizes this cost functional, approximately, is329

by linearizing the system about the initial state x0 and some reference control330

u0 (this can usually be zero). Let the linear system be331

ż = Ax0,u0
z +Bx0,u0

v; z(0) = 0; (6.15)

where Ax0,u0
= df

dx

∣∣
x=x0,u=u0

and Bx0,u0
= df

du

∣∣
x=x0,u=u0

are the Jaco-332

bians of the nonlinear function f(x, u) with respect to the state and control333

respectively. The state of the linearized dynamics is334

z := x− x0, and v := u− u0,

We have emphasized the fact that the matrices Ax0,u0 , Bx0,u0 depend upon the335

reference state and control using the subscript. Given the above linear system,336

we can find a control sequence u∗(·) that minimizes the cost functional using337

the standard LQR formulation. Notice now that even we computed this control338

trajectory using the approximate linear system, it can certainly be executed on339

the nonlinear system, i.e., at run-time we will simply set u ≡ u∗(z).340

The linearized dynamics in (6.15) is potentially going to be very different341

from the nonlinear system. The two are close in the neighborhood of x0 (and342

17

u0) but as the system evolves using our control input to move further away343

from x0, the linearized model no longer is a faithful approximation of the344

nonlinear model. A reasonable way to fix matters is to linearize about another345

point, say the state and control after t = 1 seconds, x1, u1 to get a new system346

ż = Ax1,u1
z +Bx1,u1

v; z(0) = 0

and take the LQR-optimal control corresponding to this system for the next347

second.348

The above methodology is called “receding horizon control”. The idea is349

that we compute the optimal control trajectory u∗(·) using an approximation350

of the original system and recompute this control every few seconds when our351

approximation is unlikely to be accurate. This is a very popular technique to352

implement optimal controllers in typical applications. The concept of using an353

approximate model (almost invariably, a linear model with LQR cost) to plan354

for the near-term future and resolving the problem in receding horizon fashion355

once the system is at the end of this short time-horizon is called “Model356

Predictive Control”.357

MPC is, perhaps, the second most common control algorithm implemented358

in the world. It is responsible for running most complex engineering systems359

that you can think of—power grids, oil refineries, chemical plants, rockets,360

aircrafts etc. Essentially, one never implements LQR directly, it is always im-361

plemented inside an MPC.

? Can you guess what is the most
common control algorithm in the
world?For instance, in autonomous driving, the trajectory362

that the vehicle plans for traveling between two points A and B depends upon363

the current locations of the other cars/pedestrians in its vicinity, and potentially364

some prediction model of where they will be in the future. As the vehicle365

starts moving along this trajectory, the rest of the world evolves around it and366

we recompute the optimal trajectory to take into account the actual locations367

of the cars/pedestrians in the future.368

6.5.1 Iterative LQR (iLQR)369

Now let us consider the situation when in addition to a nonlinear system,370

ẋ = f(x, u); x(0) = x0,

the run-time and terminal cost is also nonlinear371

qf (x(T)) +

∫ T

0

q(x(t), u(t)) dt.

We can solve the dynamic programming problem in this case approximately372

using the following iterative algorithm.373

Assume that we are given an initial control trajectory u(0)(·) =
{
u(0)(t) : t ∈ [0, T]

}
.374

Let x(0)(·) be the state trajectory that corresponds to taking this control on375

the nonlinear system, with of course x(0)(0) = x0. At each iteration k, the376

Iterative LQR algorithm performs the following steps.377

Step 1 Linearize the nonlinear system about the state trajectory x(k)(·) and378

18

u(k)(·) using379

z(t) := x(t)− x(k)(t), and v(t) := u(t)− u(k)(t)

to get a new system380

ż = A(k)(t)z +B(k)(t)v; z(0) = 0

where381

A(k)(t) =
df
dx

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)

B(k)(t) =
df
du

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)

and compute the Taylor series approximation of the nonlinear cost up to the382

second order383

qf (x(T)) ≈ constant + z(T)
⊤ dqf

dx

∣∣∣
x(T)=x(k)(T)

+ z(t)
⊤ d2qf

dx2

∣∣∣
x(T)=x(k)(T)

z(t),

? How will you solve for the
optimal controller for a linear
dynamics for the cost∫ T

0

(
q⊤x+

1

2
x⊤Qx

)
dt,

i.e., when in addition the quadratic
cost, we also have an affine term?

384

q(x, u, t) ≈ constant + z(t)
⊤ dq

dx

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)︸ ︷︷ ︸

affine term

+ v(t)
⊤ dq

du

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)︸ ︷︷ ︸

affine term

+ z(t)
⊤ d2q

dx2

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)︸ ︷︷ ︸

≡Q

z(t)

+ v(t)
⊤ d2q

du2

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)︸ ︷︷ ︸

≡R

v(t).

This is an LQR problem with run-time cost that depends on time (like our385

discrete-time LQR formulation, the continuous-time formulation simply has386

Q, R to be functions of time t in the Riccati equation) and which also has387

terms that are affine in the state and control in addition to the usual quadratic388

cost terms.389

Step 2 Solve the above linearized problem using standard LQR formulation to390

get the new control trajectory391

u(k+1)(t) := u(k)(t)−Kz(t).

Simulate the nonlinear system using the control u(k+1)(·) to get the new state392

trajectory x(k+1)(·).393

Some important comments to remember about the iLQR algorithm.394

1. There are many ways to pick the initial control trajectory u(0)(·), e.g.,395

19

using a spline to get an arbitrary control sequence, using a spline to396

interpolate the states to get a trajectory x(0)(·) and then back-calculate397

the control trajectory, using the LQR solution based on the lineariza-398

tion about the initial state, feedback linearization/differential flatness399

(https://en.wikipedia.org/wiki/Feedback_linearization) etc.400

2. The iLQR algorithm is an approximate solution to dynamic program-401

ming for nonlinear system with general, nonlinear run-time and terminal402

costs. This is because the the algorithm uses a linearization about the403

previous state and control trajectory to compute the new control trajec-404

tory. iLQR is not guaranteed to find the optimal solution of dynamic405

programming, although in practice with good implementations, it works406

excellently.407

3. We can think of iLQR as an algorithm to track a given state trajectory408

xg(t) by setting409

qf = 0, and q(x, u) = ∥xg(t)− x(t)∥2.

This is often how iLQR is typically used in practice, e.g., to make410

an autonomous race car closely follow the racing line (see the paper411

“BayesRace: Learning to race autonomously using prior experience”412

https://arxiv.org/abs/2005.04755 and https://www.youtube.com/watch?v=dgIpf0Lg8Ek413

for a clever application of using MPC to track a challenging race line),414

or to make a drone follow a given desired trajectory415

(https://www.youtube.com/watch?v=QREeZvHg0lQ).416

Differential Dynamic Programming (DDP) is a suite of techniques that is417

a more powerful version of iterated LQR. Instead of linearizing the dynamics418

and taking a second order Taylor approximation of the cost, DDP takes a419

second order approximation of the Bellman equation directly. The two are420

not the same; DDP is the more correct version of iLQR but is much more421

challenging computationally.422

Broadly speaking, iLQR and DDP are used to perform control for some of423

the most sophisticated robots today, you can see an interesting discussion of424

the trajectory planning of some of the DARPA Humanoid Robotics Challenge425

at https://www.cs.cmu.edu/~cga/drc/atlas-control. Techniques like feedback426

linearization work excellently for drones where we do not really care for opti-427

mal cost (see “Minimum snap trajectory generation and control for quadrotors”428

https://ieeexplore.ieee.org/document/5980409) while LQR and its variants are429

still heavily utilized for satellites in space.430

https://en.wikipedia.org/wiki/Feedback_linearization
https://arxiv.org/abs/2005.04755
https://www.youtube.com/watch?v=dgIpf0Lg8Ek
https://www.youtube.com/watch?v=QREeZvHg0lQ
https://www.cs.cmu.edu/~cga/drc/atlas-control
https://ieeexplore.ieee.org/document/5980409

	Linear Quadratic Regulator (LQR)
	Discrete-time LQR
	Solution of the discrete-time LQR problem

	Hamilton-Jacobi-Bellman equation
	Infinite-horizon HJB
	Solving the HJB equation
	Continuous-time LQR

	Stochastic LQR
	Linear Quadratic Gaussian (LQG)
	(Optional material) The duality between the Kalman Filter and LQR

	Iterative LQR (iLQR)
	Iterative LQR (iLQR)

